CS 70 Discrete Mathematics and Probability Theory Summer 2023 Huang, Suzani, and Tausik DIS 7A

1 Joint Practice

Suppose that X and Y are random variables with joint density

$$f_{X,Y}(x,y) = \begin{cases} Ax^2y^2 & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

where A is a positive constant.

- (a) What is the value of *A*?
- (b) What is the marginal density of X?
- (c) What is cov(X, Y)?

2 Max of Uniforms

Let $X_1,...X_n$ be independent U[0,1] random variables, and let $X = \max(X_1,...X_n)$. Compute each of the following in terms of *n*.

- (a) What is the cdf of *X*?
- (b) What is the pdf of *X*?
- (c) What is $\mathbb{E}[X]$?
- (d) What is Var[X]?

3 Exponential Expectation

- (a) Let $X \sim \text{Exp}(\lambda)$. Use induction to show that $\mathbb{E}[X^k] = k!/\lambda^k$ for every $k \in \mathbb{N}$.
- (b) For any $|t| < \lambda$, compute $\mathbb{E}[e^{tX}]$ directly from the definition of expectation.
- (c) Using part (a), compute $\sum_{k=0}^{\infty} \frac{\mathbb{E}[X^k]}{k!} t^k$.
- (d) Let $M(t) = \mathbb{E}[e^{tX}]$ be a function defined for all t such that $|t| < \lambda$. What is $\frac{dM(t)}{dt}\Big|_{t=0}$? What is $\frac{d^2M(t)}{dt^2}\Big|_{t=0}$? How does each of these relate to the mean and variance of an $\text{Exp}(\lambda)$ distribution?