CS 70 Discrete Mathematics and Probability Theory Summer 2023 Huang, Suzani, and Tausik DIS 1B

1 Set Operations

Note 0

- \mathbb{R} , the set of real numbers
- \mathbb{Q} , the set of rational numbers: $\{a/b : a, b \in \mathbb{Z} \land b \neq 0\}$
- \mathbb{Z} , the set of integers: $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- \mathbb{N} , the set of natural numbers: $\{0, 1, 2, 3, \ldots\}$
- (a) Given a set $A = \{1, 2, 3, 4\}$, what is $\mathscr{P}(A)$ (Power Set)?
- (b) Given a generic set B, how do you describe 𝒫(B) using set comprehension notation? (Set Comprehension is {x | x ∈ A}.)
- (c) What is $\mathbb{R} \cap \mathscr{P}(A)$?
- (d) What is $\mathbb{R} \cap \mathbb{Z}$?
- (e) What is $\mathbb{N} \cup \mathbb{Q}$?
- (f) What is $\mathbb{R} \setminus \mathbb{Q}$?
- (g) If $S \subseteq T$, what is $S \setminus T$?

2 Preserving Set Operations

Note 0 Note 2 For a function f, define the image of a set X to be the set $f(X) = \{y \mid y = f(x) \text{ for some } x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y) = \{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets. By doing so, you will show that inverse images preserve set operations, but

Recall: For sets X and Y, X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x) ((x \in X) \implies (x \in Y))$.

(a)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
.

images typically do not.

- (b) $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.
- (c) $f(A \cap B) \subseteq f(A) \cap f(B)$, and give an example where equality does not hold.
- (d) $f(A \setminus B) \supseteq f(A) \setminus f(B)$, and give an example where equality does not hold.

3 Inverses and Bijections

Note 0 Note 11 Note 11 Note 11 Note 11 Note 11 Recall that a function $f : A \to B$ is a bijection if it is an injection and a surjection, and it is invertible if there is a function $g : B \to A$ so that $g \circ f = id_A$ and $f \circ g = id_B$, where $id_A : A \to A$ and $id_B : B \to B$ are the identity functions.

(a) Prove that if $f: A \rightarrow B$ is invertible then it is a bijection.

(b) Prove that if $f: A \to B$ is a bijection then it is invertible.

(c) Let $g: B \to A$ be the inverse function for some bijection f. Is g necessarily a bijection?

4 Rationals and Irrationals

Note 2 Prove that the product of a non-zero rational number and an irrational number is irrational.