CS 70 Discrete Mathematics and Probability Theory Summer 2023 Huang, Suzani, and Tausik

DIS 1A

1 Stable Matching

Note 4

Consider the set of jobs $J = \{1, 2, 3\}$ and the set of candidates $C = \{A, B, C\}$ with the following preferences.

Jobs	Candidates						
1	A	>	В	>	C		
2	В	>	A	>	С		
3	A	>	В	>	С		

Candidates	Job		lob	S	
A	2	>	1	>	3
В	1	>	3	>	2
С	1	>	2	>	3

Run the traditional propose-and-reject algorithm on this example. How many days does it take and what is the resulting pairing? (Show your work.)

2 Propose-and-Reject Proofs

Note 4

Prove the following statements about the traditional propose-and-reject algorithm.

(a) In any execution of the algorithm, if a candidate receives a proposal on day *i*, then she receives some proposal on every day thereafter until termination.

(b) In any execution of the algorithm, if a candidate receives no proposal on day i, then she receives no proposal on any previous day j, $1 \le j < i$.

CS 70, Summer 2023, DIS 1A

(c) In any execution of the algorithm, there is at least one candidate who only receives a single proposa (Hint: use the parts above!)
3 Be a Judge
By stable matching instance, we mean a set of jobs and candidates and their preference lists. For each of the following statements, indicate whether the statement is True or False and justify your answer with a short 2-3 line explanation:
(a) There is a stable matching instance for n jobs and n candidates for $n > 1$, such that in a stable matchin algorithm with jobs proposing, every job ends up with its least preferred candidate.
(b) In a stable matching instance, if job J and candidate C each put each other at the top of their respective preference lists, then J must be paired with C in every stable pairing.
(c) In a stable matching instance with at least two jobs and two candidates, if job <i>J</i> and candidate <i>C</i> eac put each other at the bottom of their respective preference lists, then <i>J</i> cannot be paired with <i>C</i> in an stable pairing.

Note 4

CS 70, Summer 2023, DIS 1A 2

(d) For every n > 1, there is a stable matching instance for n jobs and n candidates which has an **unstable** pairing where **every** unmatched job-candidate pair is a rogue couple or pairing.

4 Pairing Up

Note 4

Prove that for every even $n \ge 2$, there exists an instance of the stable matching problem with n jobs and n candidates such that the instance has at least $2^{n/2}$ distinct stable matchings.

CS 70, Summer 2023, DIS 1A